Read about how You should treat your car

Exhaust The top dead center (TDC) of a piston is the position where it is nearest to the valves; bottom dead center (BDC) is the opposite position where it is furthest from them. A stroke is the movement of a piston from TDC t

Dodane: 30-08-2016 09:36
Read about how You should treat your car best oil for Chevrolet

The top dead center

4-stroke engines
Main article: 4-stroke engine
Diagram showing the operation of a 4-stroke SI engine. Labels:
1 ? Induction
2 ? Compression
3 ? Power
4 ? Exhaust

The top dead center (TDC) of a piston is the position where it is nearest to the valves; bottom dead center (BDC) is the opposite position where it is furthest from them. A stroke is the movement of a piston from TDC to BDC or vice versa together with the associated process. While an engine is in operation the crankshaft rotates continuously at a nearly constant speed. In a 4-stroke ICE each piston experiences 2 strokes per crankshaft revolution in the following order. Starting the description at TDC, these are:78

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Starting at TDC

2-stroke engines
Main article: 2-stroke engine

The defining characteristic of this kind of engine is that each piston completes a cycle every crankshaft revolution. The 4 processes of intake, compression, power and exhaust take place in only 2 strokes so that it is not possible to dedicate a stroke exclusively for each of them. Starting at TDC the cycle consist of:

Power: While the piston is descending the combustion gases perform work on it?as in a 4-stroke engine?. The same thermodynamic considerations about the expansion apply.
Scavenging: Around 75° of crankshaft rotation before BDC the exhaust valve or port opens, and blowdown occurs. Shortly thereafter the intake valve or transfer port opens. The incoming charge displaces the remaining combustion gases to the exhaust system and a part of the charge may enter the exhaust system as well. The piston reaches BDC and reverses direction. After the piston has traveled a short distance upwards into the cylinder the exhaust valve or port closes; shortly the intake valve or transfer port closes as well.
Compression: With both intake and exhaust closed the piston continues moving upwards compressing the charge and performing a work on it. As in the case of a 4-stroke engine, ignition starts just before the piston reaches TDC and the same consideration on the thermodynamics of the compression on the charge.

While a 4-stroke engine uses the piston as a positive displacement pump to accomplish scavenging taking 2 of the 4 strokes, a 2-stroke engine uses the last part of the power stroke and the first part of the compression stroke for combined intake and exhaust. The work required to displace the charge and exhaust gases comes from either the crankcase or a separate blower. For scavenging, expulsion of burned gas and entry of fresh mix, two main approaches are described: Loop scavenging, and Uniflow scavenging, SAE news published in the 2010s that 'Loop Scavenging' is better under any circumstance than Uniflow Scavenging.6

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Cars and User interface

Cars are equipped with controls used for driving, passenger comfort and safety, normally operated by a combination of the use of feet and hands, and occasionally by voice on 2000s-era cars. These controls include a steering wheel, pedals for operating the brakes and controlling the car's speed (and, in a manual transmission car, a clutch pedal), a shift lever or stick for changing gears, and a number of buttons and dials for turning on lights, ventilation and other functions. Modern cars' controls are now standardised, such as the location for the accelerator and brake, but this was not always the case. Controls are evolving in response to new technologies, for example the electric car and the integration of mobile communications.


Źródło: https://en.wikipedia.org/wiki/Car#User_interface